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OBJECTIVE 

 
The objective of this project is to derive a method for analyzing patterns of control flow 
in Java bytecode. This analysis, called control flow analysis (CFA), would permit control 
flow constructs in bytecode to be translated into equivalent control flow constructs in 
Java source code. 
 

CONTINUATION 

 
This project is a continuation of last year’s project, which involved writing a Java-
language decompiler. The particular algorithm described in this paper, control flow 
analysis, is a critical and highly complex piece of the decompiler’s implementation that 
was not finalized at the time last year’s project was presented. Even though this analysis 
represents only one of the decompiler’s many algorithms, it is sufficiently complex to 
merit its own paper. 
 

DESIGN GOALS 

 
• It is desired that CFA be capable of analyzing all patterns of control flow in Java 

bytecode that are directly expressible in Java source code. This covers all patterns 
of control flow that could be found in a .class file generated by a Java compiler. 

 
• It is not required that CFA deal with untranslatable constructs for which there is 

no direct translation to Java source code. Such constructs include: 
o unstructured locking, 
o partially overlapping exception-handlers, 
o inline subroutines (that use jsr or ret), 
o exceptional regions with multiple startpoints (aka headers), and 
o synchronized regions with multiple startpoints (aka headers). 
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FORMAT OF THE INPUT TO CFA 

 
Control flow analysis takes a representation of program code as its input. This 
representation consists of a graph of commands. 
 
Graphs of Commands 
 
A graph of commands consists of a set of commands, the branches that link them 
together, and the set of exception handlers (possibly empty) that protect them. 

         

 
Graph of Commands (Example) 

 
The set of commands and branches in the diagram above collectively form one graph of 
commands. 
 
NOTE: Only reducible1 graphs of commands may be used as input for CFA. 
             Since the Java language is a structured programming language, it does not  
             contain constructs for creating irreducible control flow constructs (although such  
             constructs are possible in Java .class files). 
 
 
 
 
 
                                                 
1 A reducible graph of commands is one in which every cycle (loop) has a unique  
  startpoint (sometimes called a header). 
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Commands 
 
Commands are programmatic abstractions for the individual instructions contained in 
program code. These were first introduced in last year’s research for creating a Java 
decompiler program. Commands are capable of performing basic operations such as 
assigning a value to a local variable or evaluating an expression. 

 

 
Anatomy of a Command 

 
Types of Commands 
Control flow analysis requires every command in its input to be one of the following types: 
 
Type Written Form Description 
AssignCommand assign Change the value of one variable to match that of 

another.  
EvalCommand eval Evaluates an expression and discards the result. 

Special Use: constructor invocations 
IfCommand if Performs a conditional branch, based on the 

value of a boolean expression. 
SwitchCommand switch Performs a conditional branch, based on the 

value of an integral expression. 
ReturnCommand return Returns to the caller of the method, passing a 

return value if the method is non-void. 
ThrowCommand throw Throws an exception. 
MonitorEnterCommand monitorenter Acquires a synchronization lock on an object. 
MonitorExitCommand monitorexit Releases a lock held on an object. 
InfiniteLoopCommand infinite_loop Loops forever. Equivalent to: while (true) {} 
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Branches 
 
Commands on their own, however, are not sufficient to represent control flow in program 
code. To do so, we introduce the concept of branches between commands. After the 
computer executes a command, it decides which command to execute next by picking 
one of the branches leading from the original command and following it to the command 
to be executed next.  

 

 
Anatomy of a Graph of Commands 

 
Each branch is traversable in the direction leading from the branch’s tail to its head. A 
branch is said to lead from its tail and to lead to its head. It is permissible for there to be 
more than one branch with the same (head, tail) pair. It is also permissible for a branch’s 
head and tail to be equal (i.e. the branch links a node to itself). 
 
Exception Handlers 
 
More complex command-graphs may also include regions protected by exception 
handlers. In diagrams, such regions are denoted by dashed lines surrounding groups of 
commands. 
 
Constraints on Exceptional Constructs 

• It is not permitted for any two exception handlers to exist that have partially (but 
not completely) overlapping protected regions. More formally, there must not 
exist any pair of exception handlers (A,B) such that (A.region ∩ B.region) ∉ {Ø, 
A.region, B.region}. try-catch constructs in the Java language are always 
structured in a way that conforms to this restriction. 
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Example of a Complex Graph of Commands 
 

 
Complex Graph of Commands (Example) 

 
In this diagram: 
• The black circle denotes the startpoint of the method. 
• Colored rectangles denote commands. 
• Arrows denote branches between different commands. 
• Thick dashed loops surround regions protected by one or more exception handlers. 
• Dashed arrows leading from think dashed loops denote exceptional branches leading 

from the region protected by an exception handler to its handlerPC. 
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PHASE 1A: PREPROCESSING STAGE 
 
The first phase of control flow analysis involves partitioning the input graph of 
commands into a set of structured subgraphs. 
 
Preprocessing Stage 
 
Before the input graph of commands is partitioned, a preprocessing stage is run that: 

1. gathers information about exceptional control flow constructs, 
2. gathers information about synchronized control flow constructs, and 
3. removes all monitorexit commands so that successive stages need not worry 

about them. 
 
1. Gathering Information about Exceptional Control Flow Constructs 

It can be deduced that: 
• The semantics of an exception-handler and a catch-clause are the same: to protect 

a region of code, catching all exceptions thrown within the protected region that 
match the type of exception it declares it can handle. Therefore, an individual 
exception handler corresponds to an individual catch-clause of a Java-
language try-catch-statement. 

• Catch-clauses inherit the region of code they protect from the try-statement they 
are associated with. Exception-handlers, on the other hand,  specify the region of 
code they themselves protect. Therefore, multiple exception-handlers that 
specify the same protected-region correspond to catch-clauses that are 
associated with a common try-catch-statement. 
• Try-statements in Java source code protect all statements that their associated 

try-block lexically encloses (and no others). Therefore, a try-statement A will 
lexically enclose a try-statement B if and only if B’s protected region is a 
proper subset of A’s protected region. 

 
In consideration of the preceding deductions, we define an exception handler group  
to be a set of exception-handlers that protect the same region of commands. With 
this definition, the members of an exception handler group correspond to catch-
clauses associated with a common try-catch-statement. Therefore, an individual 
exception handler group corresponds to an individual try-catch-statement. 
 
In light of this: 

• The region that an exception-handler-group A protects will be a proper 
superset of the region that an exception-handler-group B protects if and 
only if the try-catch-statement that A corresponds to lexically encloses the 
try-catch-statement that B corresponds to. 
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• More formally, given exception-handler-groups A and B,  
     (A.protectedRegion ⊃ B.protectedRegion) iff  
          (A.tryStatement lexically encloses B.tryStatement). 

 
1.1 Organizing Exception Handlers into Groups 

CFA organizes exception-handlers into groups to discover which exception-
handlers (or equivalently, which catch-clauses) are associated with which try-
catch-statements. 
 
Exception handlers are organized into groups based of the regions of commands 
they protect. Multiple exception handlers protecting the same set of commands 
will be organized into the same exception handler group. 

 

 
Graph of Commands (Example Input) 

 
In the above command-graph, the exception handlers for InterruptedException 
e and IllegalMonitorStateException e would be organized into the same 
group (since they protect the same region) and the exception handler for <all> e 
would be placed into its own separate group. 
 

 
Set of Exception Handler Groups (Example Output) 
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1.2 Arranging Exception Handler Groups into a Nesting Hierarchy 

After all exception handler groups have been formed, CFA arranges them 
into a nesting hierarchy based on the command-regions they protect. 
 
Given an exception handler group A and another group B in such a nesting hierarchy: 

• If A.region ⊃ B.region, A’s node will be designated as an ancestor of B’s node. 
• If A.region ⊂ B.region, A’s node will be designated as a descendant of B’s node. 
• If (A.region ∩ B.region) ∉ {Ø, A.region, B.region}, then A and B’s 

regions partially intersect, which is a violation of our input constraints. 
Therefore such a case need not be handled. 

 
With this definition of a nesting hierarchy’s structure, it can be deduced that: 

• If (A.node is an ancestor of B.node), A.tryStatement lexically encloses 
B.tryStatement. 

• If (A.node is a descendant of B.node), B.tryStatement lexically encloses 
A.tryStatement. 

 
In our example, the exception handler groups would be organized into the 
following nesting hierarchy: 
 

 
Nesting Hierarchy (Example Output) 
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2. Gathering Information About Synchronized Control Flow Constructs 

It can be deduced that: 
• The semantics of a synchronized-statement that lexically encloses a region R 

invoked on object T in Java source code are: 
o obtain a lock on T when execution enters R, 
o hold the lock on T while execution remains within R, and 
o release the lock on T when execution exits R (no matter how it exited). 

• The semantics of a monitorenter command C1 invoked on an expression T are: 
o obtain a lock on T upon the successful execution of C1, and 
o hold the lock on T until execution encounters (and successfully executes) 

a monitorexit command C2 invoked on T, releasing the lock on T. 
• No command other than a monitorenter command can obtain a lock on an object. 
• No command other than a monitorexit command can release a lock on an object. 

 
Therefore, the semantics of a synchronized-statement in Java source code can only 
be expressed in terms of monitorenter and monitorexit commands. It should be 
noted, however, that monitorenter and monitorexit commands could be used to 
express semantics that are not possible in Java source code (i.e. untranslatable 
constructs). 
 
Untranslatable Construct: Unstructured Locking 

The Java Virtual Machine (JVM) Specification (2nd Edition) explicitly states: 
• “Although a compiler for the Java programming language normally 

guarantees structured use of locks, there is no assurance that all code 
submitted to the Java virtual machine will obey this property. 
Implementations of the Java virtual machine are permitted but not required to 
enforce [...] structured locking.” (§8.13) 

• Structured locking describes the restriction that, “during a method invocation, 
every unlock operation on [a lock] L must match some preceding lock 
operation on L.” (§8.13) 

 
Therefore, since the JVM permits unstructured locking, and since the Java 
language lacks any construct to perform unstructured locking, unstructured 
locking is an untranslatable construct. However, since unstructured locking is 
an untranslatable construct, our design goals do not require that we handle it. 
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Identifying Synchronized Regions 

For those synchronized constructs that can be represented in Java source code,  
CFA identifies all cases where there exists a command-region R that is 
“sandwiched” (along all execution paths) between: 

• an individual monitorenter command C1 and 
• a set of one or more monitorexit commands C2[] that are invoked on a 

common target-object T. 
In such cases, CFA designates there to be a synchronized region that is 
associated with R, C1, and C2[]. 
 
If, after identifying all such synchronized regions, there exist remaining 
monitorenter and monitorexit commands that are not associated with any 
synchronized region, an assertion-failure error is raised. 
 

3. Removing monitorexit Commands 
The last task of the preprocessing stage is to remove all monitorexit commands. 
This is to relieve successive stages from needing to handle them. 
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PHASE 1B: PARTITIONING STAGE 

 
Now that information about the exceptional and synchronized constructs in the method 
has been analyzed, we are ready to partition the input graph into structured subgraphs. 
 
Different types of structured subgraphs are used to describe to different kinds of control 
flow patterns found in the input graph of commands. For example, a 
SinglyRootedSubgraph (which is a type of structured subgraph) is capable of describing 
the control flow patterns present in a chunk of a Java-language statement block. 
 
Partitioning via Parsing 
The method for partitioning the input graph into structured subgraphs can be thought of 
as a form of parsing. In this context, the input string is the graph of commands, the 
nonterminals are structured subgraphs, the terminals are commands, and the partitioned 
output graph is an abstract syntax tree. 
 
The grammar described in this section will match any reducible graph of commands that 
conforms to our input constraints. 
 
Production Rules 
Since our input string is non-linear, the production rules for our generative grammar 
cannot be easily described using standard notations such as Backus-Naur form (BNF). 
Instead, we will use an informal notation that relies on diagrams and natural language to 
describe the production rules. 
 

Terminals 
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Nonterminals 
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Additional Constraints 
Some of the production rules have additional constraints that are not shown in the above 
diagrams. 
 

ConditionalTransition 
• The set of commands in each contained SinglyRootedSubgraph is equal to the 

set of commands dominated2 by the branch entering the subgraph. 
 

SynchronizedTransition 
• The set of commands in the contained SinglyRootedSubgraph is equal to the 

set of commands sandwiched between the transition’s monitorenter 
command its corresponding monitorexit command (which was determined 
during the preprocessing stage). 

 
IterationTransition 

• All branches leading into the contained SinglyRootedSubgraph target the 
initial command of the subgraph. 

 
 

ExceptionalTransition 
• For the first contained SinglyRootedSubgraph: 

o The set of commands in the subgraph is equal to the set of commands 
protected by set of exception handlers that the ExceptionalTransition 
is associated with. 

• For every other contained SinglyRootedSubgraph: 
o The initial command of the subgraph is equal to the handlerPC of the 

individual exception handler that the subgraph corresponds to. 
o The set of commands in the subgraph is equal to the set of commands 

dominated by the branch entering the subgraph. 
 
NonemptyMultiRootedSubgraph 

 All contained SinglyRootedSubgraphs must be nonempty; no contained 
SinglyRootedSubgraph may contain both an EmptyLinearSubgraph and an 
EmptyTransition. 

 
NOTE:  Since all monitorexit commands were removed during the preprocessing  
              stage (Phase 1A), they do not appear in any of the production rules. 
  
 

                                                 
2 A command C1 is said to dominate a command C2 if and only if there exists at least one 
path from the startpoint to C2 and every such path passes through C1 at least once. 
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Applying Phase 1A and 1B to an Example 
 
 
 

 

 
 
For brevity, some Transition nonterminals (  ) are not shown in the example’s abstract 
syntax tree. 
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PHASE 2: CONSTRUCTION OF FLOW BLOCKS 
 
The second phase of control flow analysis involves transforming the abstract syntax tree 
from the previous phase into a hierarchy of flow blocks, the decompiler’s native 
representation for the control flow patterns described by the abstract syntax tree. 
 
Flow Blocks 
 

A flow block is roughly equivalent to a SinglyRootedSubgraph, except that its 
representation of the control flow patterns (present in a chunk of a statement block) 
differs slightly. 
 

 
Hierarchy of Flow Blocks (Example) 

 
Analogous Constructs: SinglyRootedSubgraphs vs. Flow Blocks 
 

SinglyRootedSubgraph Flow Block 
LinearSubgraph body 
Transition transition 
MultiRootedSubgraph following block layers 
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Anatomy of a Flow Block 
The components of a flow block include: 

 a body – a linear sequence of commands (possibly empty) 
               composed of AssignCommands and EvalCommands. 

 a transition – a control-flow-altering construct that is composed of: 
o an optional embedded command and/or 
o an optional list of contained flow blocks 

 a list of following block layers (possibly empty) 
o An individual block layer within this list of following block layers is 

composed of a list of member flow blocks. 
 

 
Anatomy of a Flow Block 
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Transitions 
 
A transition is merely a non-linear CF construct. It therefore stands in contrast to the 
body, which is a strictly linear CF construct. Only through transitions can a program 
transfer control between different flow blocks. 
 
Types of Transitions 
Listed below are the types of transitions that can be put into a flow block. 
 
Type Behavior Nesting? 
BranchTransition structural non-nesting 
IfTransition functional nesting 
SwitchTransition functional nesting 
ReturnTransition functional non-nesting 
ThrowTransition functional non-nesting 
SynchronizedTransition functional nesting 
WhiteTrueTransition structural nesting 
TryTransition structural nesting 
 
 
Functional transitions are those transitions that embed a command; structural transitions 
are those that do not. In diagrams, functional transitions are drawn with a solid border 
whereas structural transitions will be drawn with a dashed border. 
 
Nesting transitions are those transitions that can contain flow blocks; non-nesting 
transitions are those that cannot. 
 
Following Block-Layers 
 
A flow-block’s following block-layers nests the set of commands dominated by the flow-
block’s transition that are not nested by the transition’s set of contained blocks. Each 
block-layer within a set of following block-layers dominates every block-layer “below” it. 
Branching may not occur between different member flow blocks contained by an 
individual block layer. 
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Restrictions on Branching Between Flow Blocks (and Transitions) 
 
In this section, whenever we say “a flow block B1 branches to a flow block B2,” we mean, 
“B1’s transition branches to B2.” 
 
Given a flow block B with transition T and following block-layers L[] = {L1, L2, ..., Ln}: 

 T (and only T) may branch to any of its contained flow blocks. 
 Only those flow blocks that are nested by T may branch to T.  

Such branches are termed backward branches and T must be an 
IterationTransition. 

 Only those flow blocks nested by T may branch to a flow block contained by L1. 
 The only flow blocks not nested by Li that a block nested by Li can branch to are: 

o flow blocks nested by Lj, where (i < j), 
o a flow block that B may branch to. 

 
Transforming Structured Subgraphs into Flow Blocks 
 
It is fairly straightforward to transform the abstract syntax tree from the previous phase 
into the flow blocks of this phase. Informal transformation rules are given below: 
 
 GoalSymbol[sr_subgraph] => {block} 
  {block: sr_subgraph => block} 
 

SinglyRootedSubgraph[linear_subgraph, transition] => {block} 
 {block: FlowBlock[ 

body: linear_subgraph => body, 
transition: transition => transition, 
following block layers: transition => FBL]} 

 
LinearSubgraph[command_list] => {body} 

{body: Body[command_list]} 
 
Transition => {transition, FBL} 

TerminalTransition[return] 
{transition: ReturnTransition; FBL: Ø} 

TerminalTransition[throw] 
{transition: ThrowTransition; FBL: Ø} 

TerminalTransition[infinite_loop] 
{transition: WhiteTrueTransition[loop_block = Ø]; FBL: Ø} 

ConditionalTransition[if, sr_subgraphs[2], mr_subgraph] 
{transition: IfTransition[ 

then block: sr_subgraphs[0] => block,  
else block: sr_subgraphs[1] => block]; 

  FBL: mr_subgraph => FBL} 
ConditionalTransition[switch, sr_subgraphs[], mr_subgraph] 

{transition: SwitchTransition[ 
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default block: sr_subgraphs[0] => block, 
case blocks: sr_subgraphs[1..sr_subgraphs.length] ] 

  FBL: mr_subgraph => FBL} 
SynchronizedTransition[sr_subgraph, mr_subgraph] 

{transition: SynchronizedTransition[ 
sync block: sr_subgraph => block]; 

  FBL: mr_subgraph => FBL} 
IterationTransition[sr_subgraph] 

{transition: WhileTrueTransition[ 
loop block: sr_subgraph => block]; 

  FBL: Ø} 
ExceptionalTransition[protected_sr_subgraph, 

   other_ sr_subgraphs, 
   mr_subgraph] 

{transition: TryTransition[ 
try block: protected_sr_subgraph => block, 
catch blocks: other_ sr_subgraphs => block[]]; 

  FBL: mr_subgraph => FBL} 
EmptyTransition 

{transition: BranchTransition<target>; FBL: Ø} 
 
MultiRootedSubgraph[layers] => {FBL} 

{FBL: FollowingBlockLayers[layers]} 
 
With these rules, any hierarchy of structured subgraphs can be transformed into a 
hierarchy of nested flow blocks. 
 
Applying Phase 2 to an Example 
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PHASE 3A: CONSTRUCTION OF BLOCK SEGMENTS 
 

In the third phase, the hierarchy of flow blocks from the previous phase is transformed 
into a hierarchy of statement blocks, which contain block segments. 
 
Statement Blocks 
 
The statement blocks manipulated by CFA are analogous to statement blocks in Java 
source code. CFA statement blocks, unlike their Java counterparts, are not composed of 
statements, but rather, are composed of block segments. 
 
Block Segments 
 

A block segment is a chunk of a CFA statement block. Block segments consist of a linear 
body, containing a series of sequentially executed commands, and a non-linear transition 
that may transfer control to other block-segments. Transitions may optionally embed 
commands or contain other block-segments. Block segments maintain a reference to the 
next segment (if there is one) in the same block. 
 

 
Hierarchy of Statement Blocks Which Contain Block Segments (Example) 
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Block Segments vs. Flow Blocks 
Block segments, like flow blocks, have a body and a transition. Block segments, however: 

 lack following block layers, 
 are associated with the next block-segment in the same statement-block, and 
 can contain BlockTransitions (a new type of transition). 

 
Anatomy of a Block Segment 
Block segment are associated with: 

 a body, which consists of a linear sequence of commands (possibly empty); 
 a transition, which is a non-linear construct that may contain 

o an optional embedded command and/or 
o an optional list of contained block segments; and 

 the next block-segment (if present) in the same statement-block. 
 

 
Anatomy of a Block Segment 

 
Block Transitions 
 
A block transition is a structural nesting transition that always contains exactly one block 
segment. The Java-language construct most similar to a block transition is referred to, in 
this paper, as a block statement. 3 In the Java grammar, a block statement corresponds to 
the symbol Statement, rewritten as a StatementWithoutTrailingSubstatement, 
and then as a Block.4 In less formal terms, a block statement is denoted in source code 
by a pair of curly braces on their own (that are not part of another statement). 
 
                                                 
3 This construct has no official name. 
4 Gostling, James; Joy, Bill; Steele, Guy; and Bracha, Gilad. The Java Language 
Specification (2nd Edition). Addison-Wesley Pub Co., 1986. §14.5. 
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Transforming Flow Blocks into Block Segments 
 
Translating a flow block into a block segment is fairly straightforward. The body and 
transition of the original flow block can be copied verbatim into the new block segment. 
The following block layers, however, must be dealt with specially. Informal 
transformation rules are given below. 
 
FlowBlock[body=B, transition=T, following-blocks={}] 
 => BlockSegment[body=B, transition=T, next-block-segment=Ø] 
 
FlowBlock[body=B, transition=T, following-blocks={FB1, …, FBn}] 
 => BlockSegment[ 

body = {}, 
transition =  

BlockTransition[ 
FlowBlock[ 

body=B, 
transition=T, 
following-blocks={FB1, …, FBn-1} 

] 
], 

next-block-segment=FBn 
  ] 
 
Using these transformation rules, all flow blocks with following block layers are 
converted into a set of nested block segments with block transitions. 
 
Applying Phase 3A to an Example 
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PHASE 3B: STYLISTIC TRANSFORMATIONS 
 
The second half of phase three (which is optional) involves transforming the hierarchy of 
block segments in ways that reduce redundancies or improve the “stylistic” quality of the 
code. 
 
Since this subphase consists mostly of “stylistic” transformations on the set of block 
segments and because it is optional, it will not be covered in detail. Suffice to say there 
are a number of transformations which: 

• reduce the number of block transitions (by removing them where they are 
unnecessary); 

• reduce the nesting depth of block segments; 
• identify looping patterns involving while(true) transitions that can be rewritten in 

terms of while transitions, do-while transitions, or for transitions; and 
• identify finally clauses of try transitions. 

 
Applying Phase 3B to an Example 
 

 

 
 

 

 
In this example, an unnecessary block transition was eliminated. 
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ENDGAME: SOURCE CODE OUTPUT 
 
Upon the completion of phase three, control flow analysis is complete. 
 
Now, with only minimal effort, one can translate a hierarchy of block segments into Java-
language source-code. This translation must deal with: 

• the insertion of local variable declaration statements 
• the generation of names for those variables whose names are not specified in the 

.class file 
• the generation of labels for those statements that need them (especially iteration 

statements, block statements, and switch statements) 
 
This translation process, having little to do with control flow analysis, will not be 
discussed here. 
 
Transforming an Example into Source Code 
 

 

 
 
int abs(int x) { 
 if (x < 0) { 
  x = -x; 
 } 
 return x; 
} 
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PROTOTYPE IMPLEMENTATION & TESTING 

 
To ensure the algorithm detailed in this paper was valid, an implementation of it 
was created and integrated into last year’s decompiler program. This implementation 
was then was tested on .class files from the standard library of the Java 2 Platform 
Standard Edition v.1.4.1. 
 
Testing Procedure 
 
The following testing procedure was automated so that it could be efficiently applied to 
every class in the J2SE v.1.4.1 standard library. 
 
To test an individual .class file C, the automated testing unit would: 

1. Run the prototype implementation, passing the name of C as input. 
2. If the decompiler exited with an error, a Failure was recorded. 
3. If the decompiler produced output successfully, a Success was recorded. 

 
Admittedly, this testing procedure cannot identify semantic errors in the decompiler’s 
output; it can only verify that none of the decompiler’s internal assertions were violated.  
 
To counter this “blind spot” for semantic errors in the automated tests, a few manual 
followup tests were run, where the decompiled source code of several classes was 
compared (by hand) with the original source code. 
 
Results 
 
As of April 4, 2005, the decompiler’s complete set of algorithms (including control 
flow analysis) work successfully on 99.80% of the 6949 classes in the Java 2 
Platform Standard Edition v1.4.1 (according to the automated tests). In none of the 
14 unprocessable classes was the failure the fault of the control flow analysis algorithm 
(i.e., none of the assertion violations that occurred were due to the CFA algorithm being 
unaware of some type of control flow construct). 
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SUMMARY & CONCLUSION 

 
The method of control flow analysis presented in this paper can be used on all 
reducible input command-graphs consisting of only those control flow patterns that 
are directly representable using Java-language control flow constructs (i.e., that lack 
untranslatable constructs). 
 
Note that the control flow analysis algorithm detailed in this paper is designed for 
decompilers of structured programming languages5 (such as Java). Adjustments would 
need to be made to this algorithm before it could be used by decompilers of unstructured 
programming languages (such as C). 
 
 
 
 
 

APPLICATIONS OF THE RESEARCH 

 
Control flow analysis is an integral algorithm for decompilers and for other programs that 
must decompose reducible graphs in order to identify high-level control flow structures 
within them. 
 
Decompilation technology, in general, has several practical applications: 

 Decompilers are often used to modify and maintain legacy systems for which 
source code is not available. 

 The Rigi Project6 uses decompilation technology to visualize the structure of 
legacy software for which documentation is either nonexistent or of poor quality. 

 Binary recompilers are used to decompile, optimize, and recompile legacy 
binaries in order to incorporate modern compiler optimizations into them. 
“Estimating that compiler technology has contributed about 5% per year in 
system performance improvements over the last decade or more, the compounded 
performance loss to legacy binaries may be quite significant.”7 

                                                 
5 In this context, a structured programming language refers to a language in which all 
code structures (such as subroutines or code blocks) have a unique startpoint. Typically, 
any programming language that lacks a GOTO statement fulfills this classification.   
6 For more information on the Rigi Project, visit http://www.rigi.csc.uvic.ca/. 
7 Mudge, Trevor; Reinhardt, Steve; and Tyson, Gary. “Binary Recompilation and 
Combined Compiler/Architecture Enhancements Studies.” 
http://www.eecs.umich.edu/~jringenb/binary_recomp.html 
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o Other types of recompilers are used for retargeting legacy code for new 
processor architectures. 8 This avoids the cost of writing an entirely new 
program, which would incur additional development and testing costs. 

o Other types of recompilers are used to retargeting legacy code for new 
source languages. This decreases costs9 associated with maintaining 
legacy code because of the increased pool of developers and expertise 
available for the new source language. For example, programs have 
already been developed for translating COBOL code into Java code.10 

 

                                                 
8 ResQSoft is one such program for retargeting legacy code. More information on it can 
be found at http://www.resqsoft.com/engineer.html. 
9 “[A]pproximately 80% of most application budgets are allocated to software 
maintenance” according to Barbara Errickson-Connor of ASG 
(http://www.aboutlegacycoding.com/default.htm?AURL=%2FArticles%2FV%2FV60104
%2Easp). 
10 Corporola, for example, has written Cobol2Java, a COBOL to Java source code 
translator. See http://www.corporola.com/product/cobol2java.html for more information. 
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